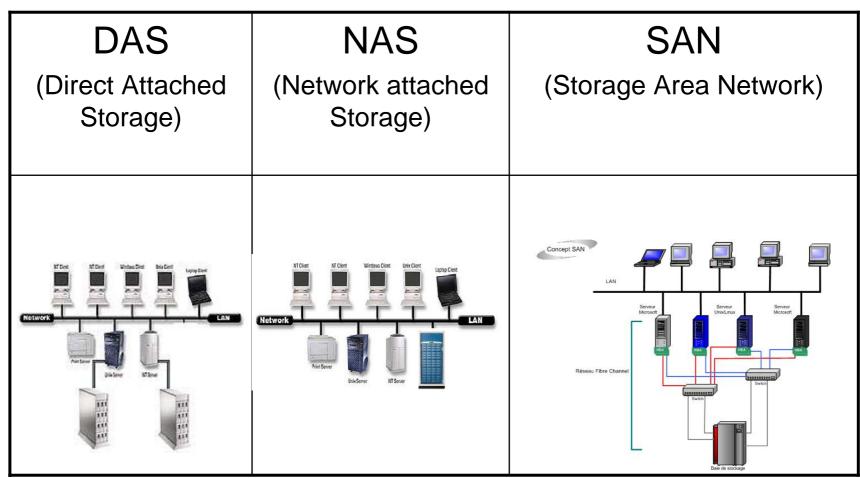
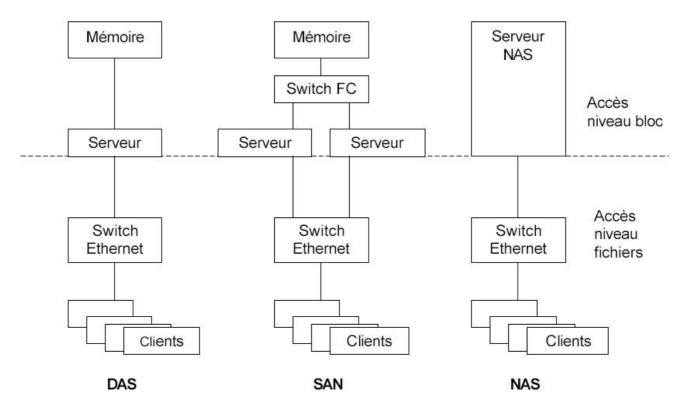
Système en haute disponibilité

Fabien Muller

- Contexte
- Approches
- Technologie SAN
- Technologie de clustering
- Solution mise en œuvre
- Bilan


Problématique de départ

- Renouvellement de l'ancien système
- Volume de données
 - de plus en plus important
 - de plus en plus sensibles
- Temps d'indisponibilité de plus en plus réduit
- Réseau dédié pour le stockage
- Cluster à haute disponibilité



- Contexte
- Approches
- Technologie SAN
- Technologie de clustering
- Solution mise en œuvre
- Bilan

Architectures

- Accès au niveau fichier: CIFS dans le monde Windows (ex SMB), NFS dans le monde Unix
- Accès niveau block: « raw ». Les serveurs accèdent aux périphériques par une interface de bas niveau, via le protocole SCSI, quelque soit l'OS (hors mainframes).

- Contexte
- Approches
- Technologie SAN
- Technologie de clustering
- Solution mise en œuvre
- Bilan

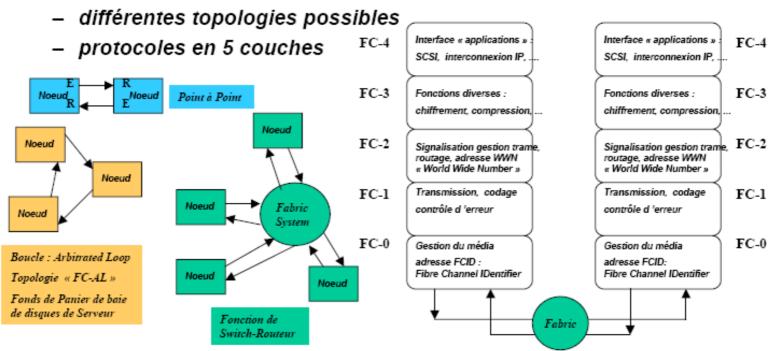
SAN - Présentation

Historiquement le protocole le plus adapté pour le stockage est SCSI mais :

- ➤ Interface parallèle → débits limités (320 Mbps voire 640)
- > Nombre de périphériques limité à 16. Longueur de câble de quelques mètres

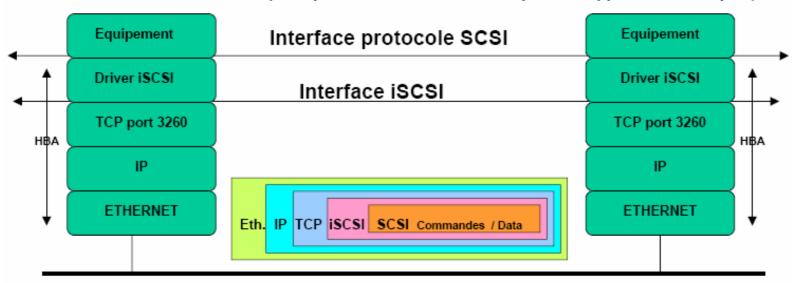
Alors l'ANSI travaille sur un successeur à SCSI :

- SCSI-3 → serial SCSI
- > Plus de limitation sur le nombre de périphériques (16 millions)
- > Possibilité de connecter plusieurs serveurs sur un même périphérique
- > Distances associées aux nouveaux support physiques: FC jusqu'à 10 Kms


Qu'est qu'un SAN?

- Sur un réseau dédié ou non
- Sur Fibre optique ou sur Ethernet
- Protocole SCSI (FCP ou iSCSI)

<u>Définition</u>: 2 périphériques ou plus communiquant par le protocole Serial SCSI (Fibre Channel ou iSCSI)

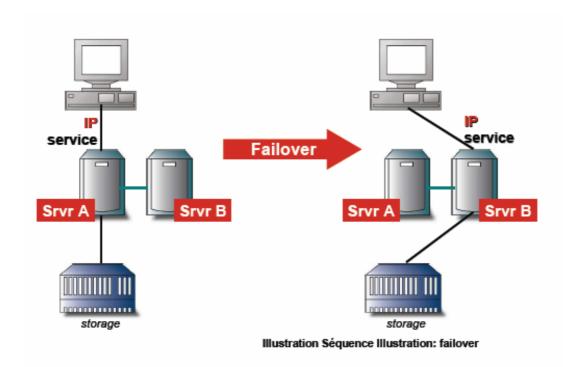

SAN – Fiber Channel

- Conçu pour transporter le protocole SCSI (version SCSI-3)
 - transport à longue distance (> 10 km sur F.O.)
 - Sérialisation Full-Duplex du protocole de BUS // Half-Duplex
 - Interface à 2 ports : émission et réception

SAN - iSCSI

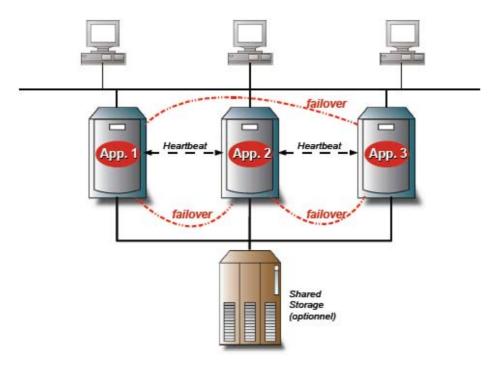
- iSCSI: Internet Small Computer System Interface
 - Initié par CISCO en 2000, normalisé par l'IETF en 2003
 - Encapsulation des trames SCSI dans TCP
 - Coupleur HBA (Host Bus Adaptateur) sortie Ethernet RJ45 directe
 - Permet de mettre en place un réseau de stockage « bon marché »
 - Pas de réseau dédié (mais performances « moindres» pour les applications critiques)

- Contexte
- Approches
- Technologie SAN
- Technologie de clustering
- Solution mise en œuvre
- Bilan

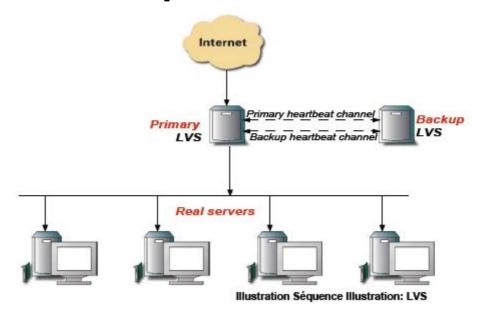


- Cluster = agrégat de machines dans un but de travail coopératif.
- Cluster : pour 2 fonctionnalités
 - Augmentation de la puissance de traitement (scalability) : on veut que la puissance de traitement suive de manière linéaire le nombre de machines du cluster.
 - Augmentation de la disponibilité (availability): on veut minimiser les inconvénients liées aux pannes par la redondance des machines entre elles.

Cluster Haute-Disponibilité


- Le cluster est composé de 3 sous-systèmes logiques :
 - □ l'accès réseau : c'est le point de passage entre les machines du cluster et les machines clientes
 - □ le support du système de fichier :
 - baie disque partagées (SCSI / Fiber Channel)
 - □ Le coeur de calcul : n couples mémoire-CPU.
- Obligatoirement :
 - □ le service doit pouvoir supporter :
 - un arrêt brutal.
 - un redémarrage brutal.

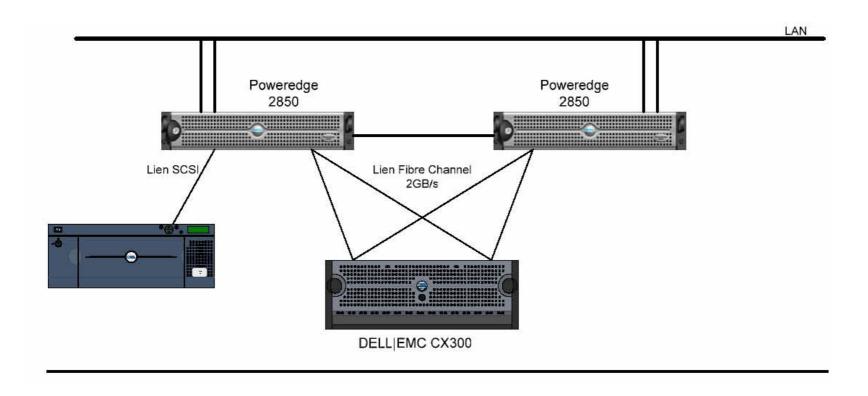
Cluster Actif-Passif


- Déploiement simplifiée, niveaux de performances garanti
- □ Serveur dédié à la reprise de services

Cluster Actif-Actif

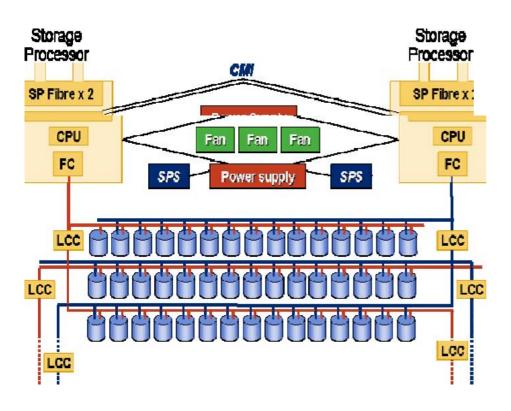
- □ tous les nœuds du cluster tournent des services
- une seule instance active du service
- □ risque de corruption des données (R/W simultanées)

Cluster à répartition de charges



- □ Ferme de serveurs
- □ Répartition d'un même service sur plusieurs machines
- □ Pour le monde extérieur : un serveur unique

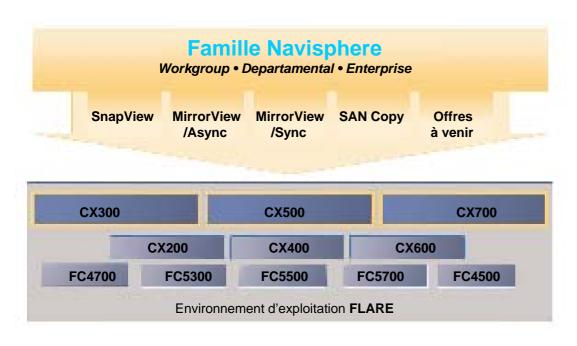
- Contexte
- Approches
- Technologie SAN
- Technologie de clustering
- Solution mise en œuvre
- Bilan


Solution mise en œuvre

Baie disque: CX300

■15 disques par DAE2 et DPE2 ■ 60 disques max (18 To) DAE2 Fiber Channel, ATA ou SATA ■ 64 serveurs DAE2 Configuration **Maximum** DAE2 DPE2 Configuration **Minimum SPS**

- ■2 processeurs à 800 MHz (SP)
- 2 Go de mémoire cache
- 4 connexions serveurs 2 Gb
- 4 bus disque interne 2 Gb
- 50 000 I/Os


Baie disque: CX300

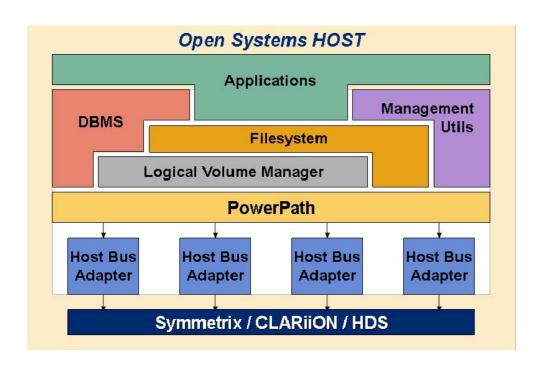
- Cache :
 - □ I/O miroré entre les Storage processeurs
 - □ Paramétrage en lecture et écriture
 - □ Paramétrage de la taille de page (2 à 16 Ko)
- Le vault
 - □ Espace réservé sur les 5 premiers disques
 - □ Configuré en RAID3
 - □ Hébergement du Système d'exploitation (Flare Code)
 - □ Espace persistent pour les données des caches

Baie disque: CX300

- Redondance totale :
 - Alimentations
 - Ventilateurs
 - Storage processeurs
 - □ Batterie de secours (SPS)
 - □ Disques double accès (SPA et SPB)
 - □ Caches (via les miroirs)
 - □ Liens fibres vers les serveurs
- Disque Hot Spare
- Garantie 3 ans 24h24 7j7 sous 4H

Baie disque: Administration

- ■Suite de management
- ■Basée sur du web (java)
- ■Echanges securisés SSL
- Configuration de la baie
- Gestion de la baie
- Suivi des incidents
- Gestion applications optionnelles


Baie disque: Administration

- Fonctionnalités de base :
 - □ Configuration des LUN et des groupes RAID
 - □ Masquage de LUN, contrôle accès SAN distribué
 - Modification dynamique de la configuration
 - MetaLUN, VirtualLUN
 - Navisphere CLI (interface ligne de commande)
- Applications optionnelles
 - ☐ MirrorView (mise en miroir entre plusieurs baies)
 - Snapview (capture d'une image instantanée d'un LUN)
 - SanCopy (copie des données entre baies)
 - Analyser (outil d'analyse de performances)

Serveurs: PowerEdge 2850

- Caractéristiques :
 - □ Bi-processeurs Xéon 3.2 GHZ, 1 Mo de cache
 - □ 2 Go de mémoire DDR2 à 400 Mhz
 - □ Bus système à 800 MHZ
 - □ Contrôleur RAID, SCSI ultra 320, 6 disques
 - □ 2 interfaces Gigabit Ethernet
 - □ 2 cartes Qlogic 2340
 - □ Linux Red Hat Advanced Server 4
- Redondance :
 - Alimentations électriques
 - Ventilateurs
 - □ Barrette de mémoire spare (Memory Spare Bank)
 - Cartes Qlogic
 - □ Disques (Raid 1)
- Garantie 3 ans 24h24 7j7 sous 4H

Serveurs: POWERPATH

- Logiciel résidant sur les serveurs
- Amélioration des performances
- Amélioration de la disponibilité
- Basculement des trajets
- Equilibrage de la charge IO
- ■De 2 à 32 canaux

Serveurs: POWERPATH

Fonctionnalité d'équilibrage de charge

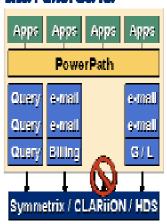
Fonctionnalité de failover automatique

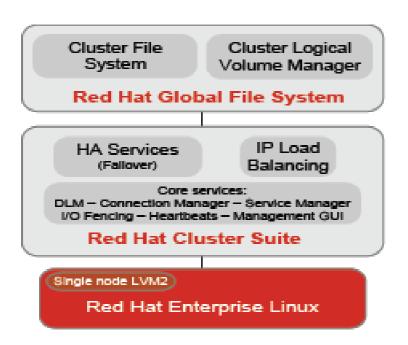
Sans PowerPath

Avec PowerPath

Sans PowerPath


Avec PowerPath




Intel / LNIX Berver

Intel / UNIX Server

Serveurs: Cluster Suite

- Logiciel de clustering
- ■Installé au-dessus de Linux Red hat
- Sous-ensemble de GFS (Global File System)
- Cluster Manager (haute disponibilité)
- ■Equilibrage de charge IP

Serveurs: Cluster Suite

Cluster Manager :

- Gestionnaire de grappe fonctionnant en mode actif/passif ou actif/actif
- ☐ Jusqu'à 16 nœuds
- Garantie complète de l'intégrité des données (fencing)
- Outil de gestion graphique
- □ Concept de service identifié par un nom et une adresse IP

v

Sauvegarde: Powervault 123T

- Caractéristiques :
 - □ Bibliothèque LTO-3
 - □ 24 cartouches, 1 ou 2 lecteurs
 - SCSI ultra 320 ou interface Fiber Channel
 - □ 9,6 To/19,2 To, 400Go/800Go
 - □ 576 Go/heure/1,15 To/heure
 - □ Lecteur de code barres
- Garantie 3 ans 24h24 7j7 sous 4H
- Logiciel :
 - □ Time Navigator

Configuration mise en place

- CX300
 - □ 9 disques de 300 Go pour les données
 - □ 1 disque Hot Spare
 - □ 2 Raid Group (5 et 4 disques) en Raid 5 (environ 2 To utile)
 - □ 6 LUN (3 par Raid Group et par SP)
- Serveurs
 - □ 6 volumes logiques, 3 par serveur
 - □ Accéder via les 4 liens Fiber Channel
- Cluster
 - Actif/Actif
 - □ Samba, NFS (3 volumes par serveur), CUPS

- Contexte
- Approches
- Technologie SAN
- Technologie de clustering
- Solution mise en œuvre
- Bilan

Bilan

- Solution en place depuis 3 mois
- Très performante et très sécurisée
- Assistance très efficace (24x7 illimitée)
- Complexe à mettre en œuvre
- Investissement important pour maitriser la technologie
- Package PowerPath pas inclus dans RHAS
- Peu de messages générés par Cluster Suite